Equilibrium-based movement endpoints elicited from primary motor cortex using repetitive microstimulation.
نویسندگان
چکیده
High-frequency, long-duration intracortical microstimulation (HFLD-ICMS) is increasingly being used to deduce how the brain encodes coordinated muscle activity and movement. However, the full movement repertoire that can be elicited from the forelimb representation of primary motor cortex (M1) using this method has not been systematically determined. Our goal was to acquire a comprehensive M1 forelimb representational map of movement endpoints elicited with HFLD-ICMS, using stimulus parameters optimal for evoking stable forelimb spatial endpoints. The data reveal a 3D forelimb movement endpoint workspace that is represented in a patchwork fashion on the 2D M1 cortical surface. Although cortical maps of movement endpoints appear quite disorderly with respect to movement space, we show that the endpoint locations in the workspace evoked with HFLD-ICMS of two adjacent cortical points are closer together than would be expected if the organization were random. Although there were few obvious consistencies in the endpoint maps across the two monkeys tested, one notable exception was endpoints bringing the hand to the mouth, which was located at the boundary between the hand and face representation. Endpoints at the extremes of the monkey's workspace and locations above the head were largely absent. Our movement endpoints are best explained as resulting from coactivation of agonist and antagonist muscles driving the joints toward equilibrium positions determined by the length-tension relationships of the muscles.
منابع مشابه
Microstimulation reveals specialized subregions for different complex movements in posterior parietal cortex of prosimian galagos.
Posterior parietal cortex of prosimian galagos consists of a caudal half characterized by connections with visual cortex and a rostral half connected with motor, premotor, and visuomotor areas of frontal cortex. When 500-ms trains of electrical pulses were used to stimulate microelectrode sites throughout posterior parietal cortex, movements were elicited only from the rostral half. The movemen...
متن کاملIllusory Sensation of Movement Induced by Repetitive Transcranial Magnetic Stimulation
Human movement sense relies on both somatosensory feedback and on knowledge of the motor commands used to produce the movement. We have induced a movement illusion using repetitive transcranial magnetic stimulation over primary motor cortex and dorsal premotor cortex in the absence of limb movement and its associated somatosensory feedback. Afferent and efferent neural signalling was abolished ...
متن کاملHijacking cortical motor output with repetitive microstimulation.
High-frequency repetitive microstimulation has been widely used as a method of investigating the properties of cortical motor output. Despite its widespread use, few studies have investigated how activity evoked by high-frequency stimulation may interact with the existing activity of cortical cells resulting from natural synaptic inputs. A reasonable assumption might be that the stimulus-evoked...
متن کاملActivation of nucleus basalis facilitates cortical control of a brain stem motor program.
We tested the hypothesis that activation of nucleus basalis magnocellularis (NBM), which provides cholinergic input to cortex, facilitates motor control. Our measures of facilitation were changes in the direction and time-course of vibrissa movements that are elicited by microstimulation of vibrissa motor (M1) cortex. In particular, microstimulation led solely to a transient retraction of the v...
متن کاملSomatotopy of monkey premotor cortex examined with microstimulation.
We reinvestigated the organization of the premotor cortex (PM) using intracortical microstimulation. Movements of forelimb, hindlimb, and orofacial structures were evoked from broad regions of PM that appeared to be contiguous with other motor areas. There were two principal findings: (1) the somatotopy of PM lies roughly parallel to that of the primary motor cortex (MI). Forelimb movements wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 34 47 شماره
صفحات -
تاریخ انتشار 2014